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Introduction

Population aging together with shifting demographics and related 
lifestyle alterations are among the underlying causes of an increased 

incidence and prevalence of age-related disorders. Such disorders 
include non-communicable diseases, which can pose severe prob-
lems, especially in older people. The greater likelihood of disease 
severity and frequency in old age increases the burden of health-
care costs, including out-of-pocket expenses in the absence of any 
employer-sponsored health insurance.1–4 Such expenses are further 
compounded by the rapid advancement of public health in most 
countries around the world. Global life expectancy is expected to 
increase, contributing to a significant rise in the number and propor-
tion of older persons worldwide.5,6 It is predicted that between 2015 
and 2030, the number of individuals aged 60 and above will rise by 
56%, reaching 1.4 billion, or the equivalent of 16.5% of the world’s 
population.7 An aging demographic augments the pressure on public 
health care systems to adapt to meet with increasing demand for age-
related care and treatment of diseases, underscoring the importance 
of a 2030 agenda for sustainable development, which necessitates 
fulfillment of all Sustainable Development Goals (SDGs).8,9 Con-
cerning health, SDGs include encompassing all segments of society, 
with a special emphasis on the most vulnerable, including the older 
population.
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Abstract
Aging, shifting demographics, and lifestyle changes are some of the underlying factors contributing to an increase in the inci-
dence and prevalence of age-related disorders. Brain health is correlated with cellular senescence and is an important indicator 
of physiological aging and several age-related diseases. Examining the current state of knowledge of the underlying mecha-
nisms of senescence as well as prospective therapeutic modalities concerning aging and age-related diseases is thus crucial. 
The senescence-associated secretory phenotype (SASP) of senescent cells (SnCs) results in a secretome, which is primarily com-
posed of growth factors, cytokines/chemokines, and extracellular matrix (ECM) remodeling proteins secreted by the arrested 
cells. Increasingly, research suggests a causative role of senescence in various diseases such as osteoporosis, neurodegenerative 
diseases, cardiovascular diseases, and metabolic dysfunction, among others. SnCs promote age-related diseases by affecting 
the differentiation and proliferation of stem cells. They do so, in part through disruption of the Wingless-related integration 
site (Wnt) signaling pathways and Yes-associated protein and its ortholog transcriptional coactivators with a PDZ-binding 
domain (YAP/TAZ) transcriptional regulation, affecting tissue regeneration and a decreased ability for the body to rejuvenate. 
Senescent cell-induced immune system dysregulation, e.g., immunosenescence, as well as senescent cell-secreted substances 
also cause persistent, low-grade inflammation in organisms known as inflammaging, which accelerates aging and results in 
tissue damage. During age-related senescence, key chromatin structural changes take place in the cells that affect nuclear 
transport, causing genomic instability, changes in nucleosome positioning, post-translational modifications of histones, global 
histone loss, etc. Elimination of SnCS using senolytics by targeting cellular and molecular pathways has emerged as a potential 
therapeutic strategy for delaying aging and improving age-related dysfunctions including brain diseases.
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Older persons contribute significantly to social capital
The United Nations (UN) strongly recognizes the diversity of older 
persons in terms of their capabilities and needs, including wisdom in 
the form of social capital that they bring to the workforce, and needs 
that are shaped by their age, including accelerated aging.10 Older 
persons are often seen as role models and mentors in society, as they 
have a great deal of experience in their respective fields and pro-
vide valuable advice and guidance on difficult issues. Notably, the 
concept of “old age” is multidimensional, which includes not only 
chronological age (based on birth date) but also, biological age.11,12 
Multidimensional measures reflect the human body’s ability to ac-
tively engage in physical activities, which may be affected by factors 
unrelated to age, like psycho-socioeconomic factors, which often 
lead to an accelerated aging process that is generally prevalent in 
low-and-middle-income countries, and results in premature aging.13

Brain health is a critical indicator of aging and aging-related 
diseases
Significantly, multiple aspects of orchestrated physiological brain 
aging with marked accelerated deterioration of brain function pri-
marily characterize human aging.14–16 Consequently, the prevalence 
of dementia globally will dramatically rise due to population aging. 
Therefore, the burden of neurological disorders associated with ag-
ing needs to be limited, along with meeting the growing challenges 
in preserving brain health among the older population in society.

Brain health is a critical aspect of public health management 
of age-related diseases
The cost of the economic burden for people with age-related neu-
rological disorders, resulting in physical disability, cognitive or 
mental disorders, and social dysfunction could be enormous.17,18 
Moreover, considering the link between brain health and wider 
health determinants, public health policies in any country obligate 
immense importance for maintaining the brain health of the popu-
lation.19,20 Indeed, brain health is critical for physical and men-
tal health, social well-being, productivity in the workplace, and 
creativity. In recent times, it is important to highlight that apart 
from causing severe damage to the physical and mental health of 
many people, fortunately, the COVID-19 pandemic has compelled 
a large number of professionals to embrace virtual working en-
vironments. Such environments necessitate an enormous amount 
of adjustments in terms of creative thinking, generating increased 
opportunities for transdisciplinary collaboration among neurolo-
gists, psychiatrists, psychologists, neuro- and socio-behavioral sci-
entists, policymakers, as well as citizens. Such cross-disciplinary 
interconnectedness fosters brain health.21,22

Between health and diseases, cellular senescence is tightly 
regulated
Simplistically, senescent cells (SnCs) are cells that have stopped 
dividing.23–27 In essence, senescence is a physiological process in 
the form of a cellular response characterized by permanent growth 
arrest (cell cycle arrest), as a tumor suppressive stress response, to 
prevent the possible occurrence of cancer cells in older age. Cell 
cycle arrest occurs in part due to the ineffectiveness of DNA re-
pair mechanisms, among others, such as other phenotypic changes 
that distinguish senescent cells from young cells, which include a 
proinflammatory secretome, associated with aging phenotype.28–30 

Senescence, as opposed to being a static endpoint, seems to be 
the outcome of a succession of evolving and phenotypically var-
ied cellular states that emerge following the initial growth ar-
rest. Given the wide range of processes in which senescence is 
involved, including embryonic development, wound healing, tis-
sue repair, cancer and aging, it is unclear if the characteristics of 
the SnCs involved in these processes are fundamentally distinct.31 
For instance, acute senescence appears to be primarily involved 
in tightly controlled biological phenomena (such as wound recov-
ery, recovery from tissue damage, and embryological growth) to 
stop the growth of specific cells. On the other hand, persistent se-
nescence typically results after chronic stress on cells leading to 
cell cycle arrest. Moreover, chronic senescence seems to affect all 
cell types and is not programmed. Some progress has been made 
in understanding cellular senescence during the last few decades. 
Researchers have made significant progress in our understanding 
of the molecular mechanisms underlying senescence because of 
the finding of the cell replicative senescence phenomena in human 
diploid fibroblasts 60 years ago, as shown in Table 1.32–53

Characteristics of SnCs
SnCs are unable to divide in the presence of nutrients and growth-
stimulating mitogens, despite being viable and metabolically ac-
tive. SnCs’ senescence-associated secretory phenotype (SASP) 
permits extensive signaling from the non-proliferating cells to the 
external environment, resulting in a secretome, which is primar-
ily made up of growth factors, cytokines/chemokines, as well as 
proteins that remodel the ECM and are secreted by the arrested 
cells.30,54–56 SnCs typically share signature features like enlarged 
and flat morphology.56 Members of the p53/p21 confer their non-
proliferating ability together with the networks of p16/RB tumor-
suppressor that serve to stop proliferation and contribute to the 
longevity of the senescent condition.57,58

SnCs are linked to embryonic development as well as a wide 
range of human diseases
Apart from its role in embryonic development, senescence has 
been shown to play key roles in fibrosis and wound healing.59,60 
For example, SnCs prevent liver fibrosis in mice by activating 
hepatic stellate cells, preventing their proliferations so that ECM 
cannot be deposited in the fibrotic scar in response to liver dam-
age.61 Additionally, similar to apoptosis, cellular senescence also 
contributes to embryonic development, in a developmentally 
programmed manner. Moreover, accumulating research tends to 
suggest a causative role of cellular senescence in a multitude of 
diseases such as osteoporosis, frailty, osteoarthritis, https://www.
sciencedirect.com/topics/medicine-and-dentistry/frailtypulmo-
nary fibrosis, https://www.sciencedirect.com/topics/medicine-and- 
dentistry/pulmonary-fibrosishttps://www.sciencedirect.com/top-
ics/medicine-and-dentistry/nephropathyrenal diseases, hepatic 
steatosis, neurodegenerative diseases, cardiovascular diseases, and 
metabolic dysfunction.62–77 Therefore, given the key roles of se-
nescence in a wide range of age-related diseases, it is crucial to 
look at both general and underlying disease-specific mechanisms 
contributing to the etiology and progression of each disease.

Cellular senescence in aging and age-induced diseases: the 
underlying mechanisms
Simplistically, single-cell dysfunction can potentially harm the 
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whole multicellular organism. Thus, nature uses a two-pronged ap-
proach to control such events. First, a malfunctioning cell can rec-
ognize its dysfunction and limit its ability to grow. Second, fully 
functional healthy cells rely on their ability to recognize the mal-
functioning cell and destroy it. Thus, cellular senescence essentially 
makes use of these inherent cellular properties to keep human health 
in good shape and mitigate diseases. For example, when a cell rec-
ognizes its dysfunction, it induces a permanent inhibition of the cell 
cycle by causing cell cycle inhibitors like p16INK4A and p21CIP1 to 
become active, followed by imparting signals to the immune system, 
that can then recognize and destroy the often-unwanted SnCs.78,79 
Aging is associated with the progressive building up of SnCs in the 
body, which further promotes accelerated physiological aging and 
age-induced dysfunctions. SnCs may accumulate with age due to 
a variety of factors, including an aging immune system that fails 
to effectively remove them from tissues, ineffective SASP released 
by SnCs, a combination of both, and other factors that are currently 
unknown.80–84 Furthermore, tissue regeneration and restoration may 
be affected by cellular senescence, hastening the aging process. 
Therefore, it is likely that the elimination of SnCs can potentially 

ameliorate age-induced cellular dysfunction and prolong life span, 
contributing to a better quality of life in old age.

Senescence promotes age-related diseases by affecting the mat-
uration and growth of stem cells to further exacerbate disease 
pathology
Multipotent cells that can self-renew and differentiate are known 
as mesenchymal stem cells (MSCs).85,86 Although there is growing 
evidence of the therapeutic efficacy of MSCs observed in a variety 
of clinical settings, MSCs eventually become incapable of regen-
erating themselves as they get older, which increases cellular dys-
function. Prior to going senescent, MSCs only experience a limited 
number of population doublings as opposed to endless growth.87 
As a result, it is generally speculated that the age of stem cells and 
replicative senescence are the primary causes of age-related mal-
function of stem cells. Among other mechanisms, physiological 
levels of reactive oxygen species (ROS) are necessary for cellular 
growth and maturation, although abundance can potentially elicit 
senescence in many tissues throughout the body, including in stem 

Table 1.  History of Cellular Senescence and Senotherapy: Some Fascinating Advancements in This Area are Presented

Year Key Finding(s)

1961 Discovery of replicative senescence in human diploid fibroblasts.32

1965 It is hypothesized that cellular senescence accelerates aging by impairing tissue repair ability.33

1970 The age of the donor being biopsied and cell replicative life span are connected.34

1980 Replicative senescence is linked to considerable variation in each individual cell’s capacity to divide both within the population  
as a whole and within a subpopulation of a clonal cell.35

1995 Discovery of SA-ß-Gal as a marker of senescent cells.36

1996 The master regulator of senescence cell cycle arrest, CDK inhibitor P16INK4A, has been identified.37

1999 In terms of protection from external natural hazards, cells arising from species of longer life spans are typically better  
protected than cells from species of relatively shorter life spans.38

2002 In human atherogenic plaques, senescent endothelial cells are seen.39

2004 Use of SA-beta-gal and P16INK4A as biomarkers to identify SnCs in aged primate and rodent tissue.40

2007 Stochastic heterogeneity in telomere-driven replicative senescence.41

2008 Identification of SASP in SnCs.33

2010 The primary function of DNA damage response (DDR) for maintaining the state of profound cellular senescence.42

2011 Senolysis; the elimination of senescent cells, extends the lifespan of mice.43

2014 Many senescent cells are highly resistant to the induction of apoptosis.44

2015 It turns out that senescent cells are advantageous for growth, development, wound healing, and tissue repair.45

2016 Discovery of the senolytic properties of BCL-2 family inhibitors. Atherosclerosis has been demonstrated to be inhibited by SnCs  
clearance using genetic and pharmacological methods.46,47

2017 The therapeutic benefit of senolysis in the management of osteoarthritis has been demonstrated.48

2019 Senescent cells consist of non-canonical MHC molecule like human leukocyte antigen E (HLA-E) that binds to inhibitory 
receptors present on NK cells along with CD8 cells, resulting in reduced immune clearance. Senolysis has been shown to  
improve the course of diabetes resulting from accelerated pancreatic beta-cell aging.49,50

2020 An analysis of 279 human genes implicated in cellular senescence reveals that these genes statistically overlap 
with genes associated with short life spans rather than those associated with long life spans.51

2023 Senolytic agents like dasatinib and quercetin possess senolytic effects, decreasing age-related increases in senescence-
associated-galactosidase, p16 and p21 gene expression, and P16 protein; Senolytics decrease the expression of SARS-CoV-2  
and virus-induced senescence in human brain organoids (preprint).52,53

CDK, cyclin-dependent kinase; MHC, major histocompatibility complex; SASP, senescence-associated secretory phenotype.
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cells.88 How ROS contributes to cellular senescence has been ex-
tensively reviewed elsewhere.89

The role of Wingless-related integration site (Wnt) Signaling 
in stem cell senescence
It is established that Wnt signaling regulates cell proliferation and cell 
polarity, along with many critical biological processes.90,91 Signifi-
cantly, stem cell maintenance and proliferation depend on the Wnt 
signaling pathway. Yes-associated protein (YAP) and its ortholog 
transcriptional coactivators with a PDZ-binding domain (TAZ) can 
be regulated by both canonical and noncanonical Wnt signaling.92,93 
YAP/TAZ proteins translocate to the nucleus after activation, result-
ing in a complex formation with transcriptional enhanced associate 
domain transcription factors, to regulate critical cellular functions 
like cell proliferation and differentiation.94 For instance, in the intes-
tine, YAP has been shown to induce epithelial regeneration.94 SnCs 
can affect stem cell differentiation and proliferation by disrupting 
Wnt signaling pathways as well as YAP/TAZ transcriptional regula-
tion. The disruption resulted in impaired tissue regeneration and de-
creased ability of the body to rejuvenate itself over time, presumably 
by affecting the self-renewal and/or multi-differentiation capability 
of tissue-resident progenitor and stem cells.95,96

Paracrine roles of senescent stem cells in age-related diseases
There is mounting evidence that dysfunction or unregulated activa-
tion of senescence contributes to tumor advancement and malignan-
cy.97,98 In numerous cancer types, including breast cancer, homing of 
MSCs to tumors has been documented.99 By attracting and differen-
tiating additional stromal cells, increasing the proliferation, motility, 
and invasiveness of cancer cells, and remodeling the ECM to facili-
tate cancer cell invasion and metastasis, proinflammatory molecules 
and degrading enzymes in the SASP contribute to the progression of 
cancer.100 For instance, senescent MSCs have been shown to pro-
mote the proliferation and metastatic spread of breast cancer cells, 
modulated by SASP components that mediate through the paracrine 
signaling, altering ECM and tumor microenvironment, resulting in 
favorable milieu for tumor progression.101 Therefore, a thorough un-
derstanding of how paracrine factors from stem cells slow down or 
stop aging-induced diseases, such as brain disorders, is essential for 
their future clinical use. For example, adipose-derived mesenchymal 
stem cells have a strong paracrine effect because they can release a 
variety of cell growth factors and chemokines that promote angio-
genesis, endogenous stem cell activation, inflammation control, and 
wound healing.102 In addition, exosomes produced and released by 
stem cells are increasingly recognized as essential components of 
intracellular communication, metabolic clearance, tissue regenera-
tion at distant sites, and the immunological response.103,104 As such, 
they may play crucial roles in reducing the adverse effects of aging-
related brain disorders.

Cellular senescence mediates brain aging and exacerbates 
brain-related diseases by affecting stem cells, and transplan-
tation of stem cells can potentially ameliorate diseases
Aging is a complex phenomenon that not only affects many aspects 
of the human body and disease development but can also have det-
rimental effects. For instance, on the progression of brain disorders, 
in part, through alteration of the quantity and quality of endogenous 
stem cells such as neural stem cells (NSCs).105–108 Resident stem 

cells that maintain a self-renewal and proliferative capacity to pro-
duce new neurons, astrocytes, and oligodendrocytes over time can be 
found in the central nervous system (CNS) of adults.108 The ability 
of CNS stem cells to self-renew and regenerate themselves decreas-
es with aging, leading to a progressive loss of function. Physiologi-
cal aging is therefore associated with a progressive loss of function 
and a decline in the self-renewal and regenerative capacities of CNS 
stem cells.109 For example, NSCs found in neurogenic niches, un-
dergo progressive loss of proliferation along with differentiation and 
maturation with the advancement of age, primarily due to a progres-
sive hostile microenvironment causing extensive DNA damage.110 
Additionally, many studies seem to suggest the importance of do-
nor age negatively affecting the quality of stem cells in terms of 
differentiation, in vivo or ex vivo expansion, and immunogenicity, 
together with a noticeable loss of reprogramming efficiency of stem 
cells to be transplanted.110,111

Aging neural stem cells underlie the development of brain 
diseases
The quality and quantity of NSCs can be significantly influenced by 
age-related cellular senescence. Over time, NSCs lose their capacity 
to enter the cell cycle effectively. p16INK4A, a marker for senescence 
and a negatively regulated cell cycle, is highly elevated with ag-
ing in the brain comprised of subventricular zone, which may be 
responsible for the concurrent drop in new neuron development me-
diated by the inhibition of cell cycle of NSCs and NPCs.112–114 It 
is likely that inhibition of this cell cycle is mediated by p16INK4A 
causing senescence. Indeed, p16INK4A overexpression leads to repli-
cative senescence (irreversible loss of cell proliferation and altered 
cell behavior) in ESC-derived NSCs.113,114 On the other hand, NSCs 
expansion and cognitive improvement can be facilitated by the in-
duction of pro-cell cycle regulators including the Polycomb family 
member BMI-1 (PCGF4) and cyclin-dependent kinases.115,116 BMI-
1 is known to be a transcriptional negative regulator of cell cycles, 
and overexpression of this gene in hippocampal NSCs induces 
self-renewal.117 Furthermore, a transgene delivered by lentivirus in 
vivo boosted hippocampus neural growth and reversed some facets 
of age-linked cognitive deterioration in older mice (16-month-old 
pups) by co-overexpressing cyclin D1 and CDK4 in the NSCs pre-
sent in the hippocampus.118 Furthermore, the removal of SnCs that 
express p16INK4A delays the onset of age-related diseases.119

The role of neural stem cells in the management of cerebro-
vascular diseases
One of the main mechanisms behind many cardiovascular diseases 
(CVD) is cellular senescence.120 A distinct secretory phenotype, 
activation of tumor suppressor pathway, a persistent growth arrest, 
and resistance to apoptosis are all characteristics of the stress or 
damage response associated with senescence.121–123 CVD, such as 
stroke is the major etiology of prolonged morbidity and the second 
greatest cause of death globally.124 However, to date, there are only 
two Food and Drug Administration (FDA)-approved therapies; tis-
sue plasminogen activator, and thrombectomy. The usefulness of 
such therapies is limited by the fact that they can only be applied 
to acute patients, encompassing only a small number of CVD pa-
tients.125–127 Additionally, the majority of recent therapeutic trials 
have mostly aimed to manage apoptosis, immunological and in-
flammatory responses, and excitotoxicity—late-onset secondary 
damage mechanisms—with little to no success. Interestingly, in 
addition to NSCs’ ability to repair tissue damage in the initial stag-
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es of disease development, they also have the ability to respond 
continuously to environmental cues, along with the ability to se-
crete paracrine growth factors and signaling factors in the right 
quantities. This results in a tailored long-term cellular response 
against stroke-related injuries, allowing NSCs to slow the progres-
sion of early cerebrovascular insult. This is in sharp contrast to 
conventional drug therapies used for the treatment of stroke.128 
Thus, despite the numerous challenges associated with repairing 
neural damage, such as the fact that neurons are highly differenti-
ated terminal cells, which restricts their capacity for regeneration, 
the likelihood that they secrete less than optimal levels of neuro-
tropic substances like BDNF (brain-derived neurotrophic factor) 
and the overproduction of inflammatory substances like cytokines, 
in principle, NSCs could provide a novel and effective alternative 
therapy for the management of stroke. The promotion of extension 
and growth of synapses, which results in synaptic plasticity and 
the regeneration of axons, together with relief from the creation 
of brain scars at the location of injuries are among the potential 
benefits of NSC transplantation in stroke patients.129–131

Neural stem cells can improve brain functions after cata-
strophic head injury
One of the most common reasons for hospitalization, disability, 
and death worldwide is traumatic brain injury (TBI).132 TBI affects 
about 10 million people annually and results from extensive brain 
tissue damage brought on by a variety of external forces, including 
direct head impacts from car accidents, blast waves from explo-
sions, etc. Recent studies point to DNA damage-induced cellular 
senescence as a potential cause of sequelae associated with mild 
TBI.133 Post-TBI complications such as visual impairment, long-
term cognitive dysfunction, hearing loss, etc., can affect patients 
and their families to a great extent. The underlying mechanisms of 
TBI are manifold including degradation of the blood-brain barrier; 
induction of marked neural inflammation, along with impaired 
neuronal degeneration.134,135 A growing body of evidence appears 
to point to a critical role of NSCs in hippocampus-induced learning 
and memory processes, as well as in the proper functioning of ol-
factory systems in the brain.136 Additionally, following TBI, great-
er neurogenic regeneration capacity has been observed in a variety 
of animal brain damage models as well as in a limited number 
of human studies.137,138 That said, solid evidence of neurogenesis 
induced by TBI in the human brain is limited, to date, primarily 
due to hurdles of obtaining human brain samples, together with 
inherent technical difficulties, in order to be able to effectively ad-
dress the detailed underlying mechanisms of de-novo neurogenesis 
through retrospective birth dating of NSC in patients.139 Further 
challenge is associated with the limiting amount of endogenous 
NSCs that demands supplementation of exogenous NSCs through 
transplantation to the damaged brain tissue in a targeted manner 
for successful post-traumatic nerve cell regeneration. Apart from 
replacing the damaged neural cells, it is conceivable that the se-
cretome of exogenous stem cells can further alleviate the proin-
flammatory reaction at the injury site to assist with the overall 
healing process, and to improve brain health post-injury.

The potential impact of MSCs on cellular senescence-induced 
neurodegenerative disorders
It is speculated that cellular senescence contributes significantly to 
the physiological aging process and aging-induced diseases, such 
as Alzheimer’s Disease (AD) and Parkinson’s Disease (PD).140,141 

Senescent astrocytes, microglia, endothelial cells, and neurons 
have been seen in the brains of AD patients and AD animal mod-
els.AD, which is characterized by the accumulation of ß-amyloid 
peptides in the ECM between neurons, also known as amyloid 
plaques, and the development of neurofibrillary tangles within the 
cells as a result of tau protein hyperphosphorylation in neurons, 
is the primary cause (50–70%) of dementia cases worldwide.142 
The aforementioned factors cause progressive neuronal loss due to 
neuroinflammation and oxidative stress. In 2015, nine individuals 
with mild to moderate AD underwent the first phase of a clini-
cal trial using MSCs from human umbilical cord blood.143 Due to 
the lack of any adverse reactions observed in the patients, MSCs 
were stereotactically injected into the hippocampus and anterior 
hippocampus, indicating the viability and safety of the stem cell 
administration. Since that time, a variety of clinical trials are still 
being conducted on AD patients and are registered on ClinicalTri-
als.gov under the trial numbers NCT01547689, NCT02672306, 
NCT02054208, and NCT02600130.

On the other hand, substantia nigra’s dopaminergic neuron loss 
in PD patients characteristically manifests as a typical movement 
problem.144 In theory, it might be possible to convert MSCs into 
astrocytes and neuron-like cells in the culture before transplanting 
those cells back into the patients. As an alternative, the astrocytes 
in PD patients can be transdifferentiated (direct differentiation) to 
produce dopamine-releasing neurons endogenously or through an 
intermediate formation of NSCs, by adjusting the environmental 
cues, which regulate the origin of neurons by specifying a targeted 
developmental pathway.145–147 Having said that, to fully under-
stand NSCs or MSCs’ potential in treating neurodegenerative ill-
nesses, more research is required in this field.

The function of cellular senescence in the growth and progres-
sion of brain tumors
Cellular senescence in cancer is brought on by a variety of stressors, 
such as DNA damage, oncogene activation, therapeutic drugs, or re-
active oxygen species.148,149 The primary malignant brain tumor that 
affects adults most frequently is glioblastoma multiforme (GBM).150 
However, it is still resistant to systemic therapy. Senescent cell re-
moval has become a potentially effective new cancer treatment 
strategy. SnCs are identified in patients and mouse GBMs.151 After 
partial elimination of p16INK4A-expressing malignant SnCs, which 
make up less than 7% of a tumor, female mice with GBM have im-
proved survival. By integrating single-cell and bulk RNA sequenc-
ing, immunohistochemistry, and genetic knockdowns, this study 
identifies nuclear factor erythroid 2-related factor 2 transcription 
factor as a determinant of the senescent phenotype.

The potential benefits of stem cells and mechanisms of action in 
the management of brain tumors
Interestingly, adult stem cells may potentially be a powerful tool 
and could offer a great therapeutic resource for the management of 
brain tumors. NSCs and MSCs both migrate extensively towards 
primary and metastatic cancers in the brain, based on transplant 
trials performed on animals with brain tumors.152 The ability of 
stem cells to target tumors effectively enables the delivery of cyto-
toxic substances and signals, such as apoptosis-inducing proteins, 
anti-angiogenic factors, nanoparticles, oncolytic viruses, cell cycle 
modulators, and inducers of cellular differentiation, among oth-
ers, to the tumour cells while sparing healthy cells.153 The immu-
nomodulatory qualities of the transplanted stem cells may suppress 
tumor growth by altering the tumor microenvironment in addition 
to their potential impact on cancer stem cells; an area that warrants 
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further investigation.153–156 Prior to being effectively translated 
into clinical settings, the adoption of relatively new therapeutic 
technologies, such as genetically engineered stem cells that give 
anti-tumor capabilities, would necessitate a more thorough under-
standing of underlying mechanisms. Nevertheless, human tissue-
derived MSCs are generally regarded as one of the most promising 
approaches in delivering therapeutics and preventing the critical 
loss of cells in the brain, due to the abundance of MSCs available, 
especially from adipose tissue and/or bone marrow, together with 
easy isolation and ex vivo expansions for clinical use and fewer 
ethical concerns. Moreover, recent studies tend to show that trans-
planted MSCs can even disrupt the blood-brain barrier and target 
damaged tissue, where they can exert therapeutic effects through 
multidirectional differentiation, execute paracrine effects along 
with the release of extracellular vesicles, and even transfer mito-
chondria to the damaged neurons through tunneling nanotubes, im-
proving syntactic function and enhancing higher-order cognitive 
functions.157,158 However, to produce fully functional exogenous 
sources of neural cells that can be easily grafted into damaged neu-
ral tissue in the face of hostile environments caused by insults such 
as brain injury, more research is required to precisely decipher the 
in vivo mechanisms that guide NSC differentiation to functional 
neurons. Also, more thorough pre-clinical and clinical research is 
urgently needed to accurately determine the safety and efficacy 
of stem cell therapy by considering the effects of aging on stem 
cells and the transplant recipients to preserve brain health and to 
ameliorate a wide range of brain disorders. In addition to the func-
tional dysregulation of stem cells mediated by cellular senescence, 
it would be interesting to explore the specific immune and molecu-
lar pathways that drive age-related diseases.

SnCs-mediated dysregulation of the immune system aggra-
vates age-related diseases by inducing immunosenescence and 
inflammaging
The progressive decline of the physiological characteristics and 
dysregulation of the immune processes with age, as a result of im-
mune cell senescence, which is known as immunosenescence, is 
believed to cause reduced elimination of SnCs in the body.159,160 
SnCs accumulate as a result of decreased senescent cell clearance 
and surveillance due to the lower numbers of immune cells, such 
as macrophages together with their dysfunctions. Additionally, ag-
ing causes an imbalance between immunological and inflammatory 
responses that lower immune response effectiveness and produce 
an immunosuppressive microenvironment.161 As a compensatory 
response, inflammatory mediators like regulatory T (Treg) cells and 
M2 macrophages, which are immunosuppressive, while promot-
ing myelopoiesis by releasing immunosuppressive substances like 
transforming growth factor-β (TGF-β), ROS, and interleukin-10 
(IL10).162,163 The promotion of growth and activation of M2 mac-
rophages and Treg cells are then further aided by IL10.164 In fact, a 
few of these substances inhibit specific immune system components 
and accelerate immunosenescence. TGF-β, for example, may inhibit 
helper T (Th) cell development, reduce the cytotoxicity of CD8 T 
cells and NK cells, and diminish the immunological response of B 
cells, all of which can result in immune paralysis, a chronic immune 
system dysfunction.165,166 Significantly, immunosenescence along 
with secreted factors from SnCs, additionally results in a chronic 
low-grade inflammatory response known as “inflammaging” in 
organisms, which promotes aging and causes tissue damage.167,168 
The factors released from SnCs such as proinflammatory cytokines 
and chemokines normally attract and induce immune cells for the 

destruction of SnCs. However, an impaired immune system fails to 
resolve these inflammatory signals due to immune cell senescence, 
causing inflammation to be further intensified together with the es-
tablishment of a chronic inflammatory cycle, resulting in a greater 
accumulation of SnCs. Chronic inflammation can interfere with 
physiological functions, and play a role in the development and/
or progression of diseases such as atherosclerosis, type II diabetes, 
and osteoporosis. Furthermore, it is conceivable that the aging brain 
might reduce the efficacy of transplanted stem cells due to increased 
neuroinflammation associated with aging.169,170

Immunosenescence is exacerbated by age-related telomere 
shortening
The immune system is particularly vulnerable to the effects of ag-
ing because its cells adaptively respond to immunological chal-
lenges with massive proliferation and constriction. Telomeres have 
drawn attention since they have proven to be a great indicator of 
proliferative history and replicative reserve.171,172 Age-related 
declines in lymphocyte telomerase activity and average telomere 
length are both observed in the immune system.173 Telomere short-
ening might result in DNA deterioration and cell cycle arrest, 
which would impair immune cell function and make pathogen re-
moval less effective.174 Telomerase affects immunological activa-
tion, differentiation, and immunosenescence by regulating critical 
immunomodulatory proteins such as NF-κB and β-catenin.175 The 
immune response is negatively impacted by the downregulation of 
telomerase activity, which also activates ageing cells to exacerbate 
age-related immune dysfunctions.176

Immunosenescence is exacerbated by an age-related meta-
bolic decline
In the course of research, it has been clear that nutritional metabo-
lism has a significant impact on immune function. Age causes a 
decline in glycolytic metabolism as well as aberrant mitochondrial 
energy metabolism, which affects T and B cell activation.177 Co-
enzyme NAD+ catalyzes metabolic processes in the cell and trans-
forms into NADH. Age-related decreases in NAD+ are caused by 
a decrease in production. Furthermore, age-related decreases in 
NAD+ metabolism activate NLRP3 inflammasomes, which may 
be the cause of inflammatory disorders.178 Inflammatory and SnCs 
seen in aged tissue contribute to metabolic failure, exacerbating 
the immunological dysfunction linked to immunosenescence.179

Chromatin architectural changes regulate aging and exacer-
bate age-related diseases
During physiological aging and senescence, prominent chromatin 
structural changes take place resulting in alterations: (1) in the nu-
clear envelope that affects nuclear transport; (2) genomic instabil-
ity such as DNA damage and telomere attrition; (3) changes in 
nucleosome positioning; (4) post-translational modifications of 
histones; (5) global histone loss together with loss of heterochro-
matic regions and; (6) chromatin spatial interaction changes to-
gether with large-scale chromatin rearrangements.180–189

Nuclear envelope dysfunctions lead to aging-related diseases
Aging affects nuclear transport by disrupting the structure and 
function of the nuclear envelope (NE). As we age, NE becomes 
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more fragile and less effective at keeping nucleic acids and pro-
teins within the tight compartment of the nucleus, since in eukary-
otic cells the NE serves as a communication link between the cy-
toplasm and nucleus.190 The nuclear lamina, a bilayer membrane, 
and the nuclear pore complexes (NPCs) make up the majority of 
the NE dynamic cellular compartment and are primarily composed 
of three components: the nuclear lamina, a double membrane, and 
the NPCs.191 The double membrane, which is made up of the inner 
nuclear membrane and the outer nuclear membrane, is divided by 
the perinuclear space. When these two membranes link at various 
points, supramolecular structures called NPCs are produced. These 
structures act as channels for the selective import and export of 
macromolecules. These protein complexes are structurally made 
up of nucleoporins (Nups), which are essential functional elements 
of the diffusion barrier and transport channels. When any of the 
three components of NE become damaged or lose their integrity 
with age, NE becomes dysfunctional and eventually ruptures, 
leading to aberrant nuclear transport. Importantly, a defective NE 
can impair the transport of proteins and other molecules, includ-
ing transcription factors, across the NE, resulting in flaws in DNA 
repair mechanisms, changing the expression of numerous age-
related genes, and causing cellular senescence or even cell death.

Genomic instability associated with aging promotes aging-
related diseases
Endogenous DNA damage, especially DNA double-strand breaks, 
is considered a major marker of genomic instability.192 As a com-
pensatory response, when DNA is damaged, the DNA damage re-
sponse and cell cycle checkpoint pathways, such as the p53/p21 
and p16INK4A/pRb pathways, are activated to block the cell cycle 
and prevent the transmission of damaged genetic material to prog-
eny cells.193,194 Importantly, previous studies seem to suggest that 
compared to the general population, centenarians exhibit fewer 
somatic and germ cell mutations, which suggests that their DNA 
repair mechanisms are more effective at maintaining genomic sta-
bility, underscoring its importance in age-related diseases. Nuclear 
DNA damage foci that persist have been observed in SnCs.195 This 
is further compounded by the fact that in addition to DNA dam-
age, mitochondrial DNA (mtDNA) is highly susceptible to age-
related DNA damage, as it contains only exons together with the 
fact that its genome is not enveloped in the form of chromatin, to 
be able to elicit effective DNA damage responses and repair the de-
fects.196 Because of such traits, mtDNA is more prone to mutations 
than nuclear DNA. Additionally, a high-energy electron leakage 
in the respiratory chain is also possible because mitochondria are 
the powerhouses of the cell. When electrons leave cytochrome c 
oxidase before reducing oxygen to water, superoxide is produced, 
resulting in oxidative stress, which increases the rate of mtDNA 
mutations. Additionally, the activity of oxidative phosphorylation 
(OXPHOS) declines with age due to wider negative transcriptional 
regulation of genes impacting mitochondrial energetics, resulting 
in cellular senescence.196,197

Alterations in nucleosome positioning in chromatin in aging 
and age-related diseases
The nucleosome is chromatin’s primary structural component. 
Each nucleosome contains an octamer of core histone proteins 
(H2A, H2B, H3, and H4, each in two copies), 146–147 base pairs 
of DNA that are wrapped around in approximately 1.7 turns, and 
about 54 base pairs of linker DNA (10–90 base pairs).198,199 Nu-

cleosome arrays have approximately an 11 nm diameter and a 5.5 
nm height, resembling beads strung together. The main structure 
of chromatin is made up of these nucleosome arrays, also known 
as 10 nm fibres. The chromatin is typically separated into regions 
with darkly stained heterochromatin (in which genes are repressed) 
and lightly stained euchromatin (in which genes are expressed) 
using staining techniques.200 Chromatin provides the framework 
that enables the regulation of all genomic processes because the 
machinery that mediates transcription, repair, and DNA replica-
tion is relatively non-sequence specific, and if the genome were 
naked, they would likely carry out their tasks randomly and in an 
unregulated manner. Thus, alterations in nucleosome positioning, 
especially in the promoter region of the genome, with age, can 
have deleterious consequences in terms of gene expression and 
genomic instability like DNA breaks along with replication errors, 
chromosomal translocation, and also when mtDNA is transferred 
into the nuclear genome, as often observed in lower eukaryotes 
like yeast.201

The role of post-translational modifications of histones com-
prising of chromatin in age-related diseases
Although a definite causal relationship has not yet been shown 
with certainty, posttranslational modifications (PTMs) of histones, 
whether spontaneous or physiological/pathological, are emerging 
as significant indicators of aging and aging-related diseases.202 The 
best-studied modifications are acetylation, methylation, phospho-
rylation, ubiquitylation, and ADP-ribosylation. PTMs are the con-
sequence of chemical changes that can be dynamically added and 
removed by chromatin-modifying enzymes. These marks, along 
with other more recently recognized modifications like crotonyla-
tion, succinylation, and malonylation have the potential to change 
the interactions between histone and DNA as well as histone and 
other histones, making them key regulators of nucleosome dynam-
ics, affecting large varieties of gene expression including aging-
related genes.203–205 For example, histone methylation and histone 
acetylation are increasingly being considered prominent histone 
modification methods by which epigenetic changes are mediated 
during aging.206 These modifications can potentially serve as ther-
apeutic targets in the pursuit of rejuvenation.207

Epigenetic alterations of heterochromatin and global histone 
loss mediate aging and associated diseases
Heterochromatin is further divided into constitutive and faculta-
tive types. Constitutive heterochromatin describes stronger hetero-
chromatin domains that are primarily found in telomeric regions 
and contain transposable elements along with satellite sequences. 
These areas’ densely packed constitutive heterochromatic state 
prevents damaging chromosomal rearrangements that could lead 
to genomic instability by suppressing double-strand breaks and 
nonallelic homologous recombination (NAHR), especially during 
meiosis.208 On the other hand, a DNA sequence may be found in 
euchromatin in one cell but facultative heterochromatin in anoth-
er.209 Reactive oxygen species continuously wreak havoc on cellu-
lar genomes through a multitude of mechanisms. There is evidence 
that higher-order condensed chromatin structures shield DNA 
from both radiation- and hydroxyl radical-induced DNA double-
strand breaks, underscoring the importance of heterochromatin in 
increasing the need for cellular defense with aging to prevent the 
induction of oxidative DNA damage. Thus large-scale heterochro-
matin loss during aging can result in the unwanted transcriptional 
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activation of aging-related genes together with increased suscep-
tibility to DNA damage. Importantly, loss of heterochromatin also 
occurs during senescence. SnCs have facultative heterochromatin 
domains known as senescence-associated heterochromatin foci, 
which silence genes that typically promote cell division.210,211 
Additionally, nucleosome loss has been shown to cause global 
transcriptional upregulation and genomic instability during yeast 
aging.201

Spatial chromatin architectural alterations and large-scale 
chromatin rearrangements confer to aging events
The arrangement of higher-order chromatin has received a lot of 
attention lately. With the introduction of high-resolution nuclear 
microscopy and chromosomal conformation capture (3C) meth-
ods, our understanding of chromatin organization has advanced 
dramatically.212,213 The introduction of 3C has additionally pro-
vided advanced insight into how alterations of chromatin occur 
with aging and cellular senescence. ATP-dependent nucleosome 
remodeling complexes can regulate the nucleosome distribution 
throughout chromatin, resulting in either more compact or more 
accessible chromatin.214 Inactivation or deletion of the chromatin 
remodeler ISW2 in budding yeast extends life span in a target of 
rapamycin (TOR)-independent way.215 The nucleosome remode-
ling and deacetylase that has been linked to aging, is an additional 
ATP-dependent remodeling complex, albeit its precise molecular 
mechanism of action is yet unknown.216 The link between chroma-
tin arrangement, aging, and the underlying mechanisms of cellular 
senescence has been investigated recently.

After examining the immunological and molecular mecha-
nisms that underlie age-related diseases, it is critical to consider 
whether and how therapeutic interventions using pharmacological 
approaches would stop the emergence and further propagation of 
age-related diseases.

The anti-aging properties of senolytics may potentially im-
prove the health of older persons, and prevent aging-related 
diseases
Senolytics are substances that can be used to specifically kill SnCs 
as a result of accumulating research that strongly suggests the pri-
mary role senescence in physiological aging and age-induced ill-
nesses in model organisms.217–219 Such evidence is in tune with the 
Geroscience Hypothesis, which contends that by pharmacological-
ly delaying the development or severity of several chronic diseases 
by targeting fundamental aging mechanisms, common underlying 
risk factors for these diseases will be reduced.220 Two methods are 
utilized to find senolytics: drug library screening on several senes-
cent cell types in vitro, and senescent cell anti-apoptotic pathways 
(SCAPs) for drug development.221 SnCs have been demonstrated 
to build up with aging in a variety of tissues and contribute to a 
wide range of chronic illnesses, including diabetes, cancer, osteo-
arthritis, and Alzheimer’s disease, among others.222 Furthermore, 
it has been demonstrated that removing SnCs via genetic methods 
might reduce a number of illnesses linked to senescence, and delay 
the development of age-associated disorders. As a result, in order 
to cure a variety of age-related diseases and improve health and 
longevity, efforts to promote senolysis are therefore a realistic op-
tion. According to class, senolytics reported to date are: (1) ABT-
263 (Navitoclax), A-1331852, A-1155463, and ABT-737, which 
are BCL-2 family inhibitors, (2) Inhibitors that inhibit HSP90 such 
as 17-DMAG (Alvespimycin), Geldanamycin, 17-AAG (Tane-

spimycin), Ganetespib, (3) Compounds that target P53 pathway 
e.g., FOXO4-DRI, UBX0101, RG7112 (R05045337), P5091, 
etc., (4) Curcumin, Fisetin, O-vanillin, etc., that are either natural 
products or their analogs, (5) Ouabagenin, Quabin, Bufalin, K-
strophanthin, etc., which are cardiac glycosides, (6) Prodrugs that 
modify galactose e.g., 5FURGa, Nay-Gal, SSK1, among others, 
(7) PROTACs such as PZ15227, and ARV825 (8) Miscellaneous, 
e.g., MitoTam, Panobinostat, AT-406, etc., (9) Senolytic combina-
tions like Dasatinib + Quercetin, Piperlongumine along with ABT-
263, Tamatinib in combination with ABT-263, (10) Chemothera-
peutic and senolytic combinations like Olaparib in combination 
with ABT-263, Taxol + Panobinostat, etc.223,224

The BCL-2 protein family is essential for the control of cell 
death by a multitude of mechanisms, including apoptosis and au-
tophagy.225 Yosef et al. evaluated the effect of the BCL-2 family’s 
individual members and their combinations on the viability of 
SnCs.226 Increased levels of BCL-W and BCL-XL were shown to 
make SnCs more resistant to apoptosis, and their combined inhibi-
tion resulted in SnCs’ death. This mechanism is thought to underlie 
the senolytic actions of compounds that inhibit BCL-2 like ABT-
737 or ABT-263. Moreover, as an HSP90 inhibitor, 17-dimethylami-
noethyalamino-17-demethoxygeldanamycin (17-DMAG) competes 
with ATP at its binding site and obstructs HSP90’s intrinsic ATPase 
activity.227 Thus, 17-DMAG’s inhibition of HSP90 may ultimately 
result in cell death to be considered an effective senolytic drug. It 
has been proposed that one senescence mechanism involves increas-
ing p53 transcriptional activity by preventing it from interacting 
with forkhead box protein 4 (FOXO4) or mouse double minute 2 
homolog (MDM2). The drug UBX0101 and the engineered peptide 
FOXO-DRI both successfully eliminated SnCs from mice by inhib-
iting MDM2/P53, respectively.228 On the other hand, senescent lung 
fibroblasts (IMR90) that had undergone ionizing radiation-induced 
senescence were reported to be specifically killed by RG-7112.229 
The natural substance ouabain, a member of the GC family of car-
diac glycosides, was once thought to be a particular inhibitor of Na+ 
K+-ATPase, but later found to be a general senolytic drug.230 Inter-
estingly, lysosomal β-galactosidase (SA-β-gal) is often elevated, and 
this is mostly seen in SnCs.231 Pro-drugs with a cleavable galactose 
moiety connected to the cytotoxic component can be processed spe-
cifically in SnCs due to the increased SA-β-gal activity, releasing the 
cytotoxic compound and only killing senescent cells.232 Li Zhang et 
al. performed an exhaustive analysis of the unique mechanisms of 
action for all other kinds of senolytics; this analysis is not covered in 
the scope of the article.223

Senolytics in stem cell rejuvenation
Senolytics, which selectively eliminate senescent cells, have been 
found to enhance stem cell activity and induce tissue regeneration 
in recent research. Senolytics can create a more favorable environ-
ment for stem cells to function and preserve tissue homeostasis by 
eliminating these damaging cells. MSCs are prone to replicative se-
nescence and senescence-associated functional decline, which lim-
its their application in regenerative medicine.233 Senescent MSCs 
may be removed using senolytics during in vitro expansion or bio-
processing for transplantation.234,235 Some investigated chemicals 
examined in vitro are found to play a significant effect in the se-
nescence, rejuvenation, and transplanting of MSCs. Study identi-
fied the long-term expansion capacity of MSCs, as well as effects 
on telomere attrition, SA-β-gal staining, and senescence-associated 
DNA methylation alterations, are molecular markers for replicative 
senescence. The four compounds that could have senolytic effects 
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included navitoclax (ABT-263) nicotinamide riboside, quercetin, 
and danazol.236,237 Only ABT-263, one of the four tested medicines, 
had a senolytic impact on MSCs of human origin, and therapy us-
ing this substance did restore telomere length or other critical sig-
natures of aging cells such as epigenetics, among others, in MSCs. 
Therefore, senolytics are indeed in the early stage of development, 
necessitating greater efforts to find more effective senolytic drugs. 
Furthermore, senolytics have been shown to increase the capacity 
of elderly mice’s bone marrow MSCs to produce bone.235 Addition-
ally, the pharmacological elimination of senescent cells with acute 
systemic administration of the senolytic drug ABT-263, which im-
proves learning and memory in middle-aged mice, caused a rapid 
increase in NPC proliferation and neurogenesis.238 Hippocampal 
NPCs are also stimulated by the genetic ablation of SnCs.239

Targeting epigenetic regulators of senescence as potential 
therapeutics
One of the potential approaches for the epigenetic intervention 
of senescence is the inhibition of the SASP.240 Several investiga-
tions have found that the SASP is specifically driven by epigenetic 
mechanisms that can be targeted by therapeutic means. For ex-
ample, sirtuin-1 (SIRT1) has been found to directly regulate the 
expression of the SASP.241 Another study found that SIRT1 knock-
down or its reduced expression, which normally happens during 
senescence, causes increased acetylation of H3K9 and H4K16 at 
the promoter of IL6 and IL8. This results in the transcriptional 
activation of these cytokines.242 Moreover, in addition to directly 
regulating SASP expression, epigenetic factors can also activate 
the pro-inflammatory signaling that drives SASP activation. For 
example, during senescence induction, the mixed lineage leukemia 
gene (MLL1) protein increases the activation of cell cycle genes 
related to proliferation, resulting in hyper-proliferative stress and 
the susceptibility of DNA to a damage response.243 This results in 
the sensitization of the NF-κB signaling pathway kinked to pro-in-
flammatory response, which augments the expression of the SASP. 
Additionally, this study reveals that inhibition of MLL1 downregu-
lates SASP gene expression without allowing senescent cells to 
evade proliferative restriction, suggesting the therapeutic effect 
associated with the intervention of MLL1. Furthermore, as cells 
age, DNA damage response induces epigenetic modifications that 
activate the SASP gene.245,245 The G9a and G9a-like protein his-
tone methyltransferases are degraded by proteasomes as part of the 
DNA damage response of G9a-like protein (GLP).246 This causes a 
decrease in H3K9 dimethylation, an indicator of transcriptional re-
pression, imprinted at the promoter of SASP, leading to enhanced 
gene expression. Importantly, following chromatin remodeling, 
the DNA damage response can also stimulate and strengthen the 
SASP without causing actual DNA breaks.247 The expression of 
osteopontin, a crucial pro-inflammatory SASP component, has 
been shown to rise specifically in response to histone deacetylase 
1 (HDAC1) inhibition, which results in hyperacetylation of his-
tone and non-histone proteins.248 As a result, HDAC1 inhibition 
causes the development of a protumorigenic milieu and tumour 
growth in vivo by abrogating senescence. Tetramethylpyrazine has 
also been shown to effectively decrease the senescent phenotype 
of cells by influencing EZH2, which catalyzes tri-methylation of 
the histone H3 protein’s 27th lysine residue.249,250 Also, increasing 
mitochondrial NAD+ levels by overexpressing nicotinamide nu-
cleotide transhydrogenase and nicotinamide mononucleotide ade-
nylyltransferase 3 and delaying replicative senescence can more 
effectively reprogram aged MSCs.251

Challenges associated with senolytics intervention
Senescent cells have been shown to be essential for processes like 
wound healing and parturition; however, this comes with a caveat 
and complications when using senolytics. In principle, senescent 
cells can be removed by senolytics on an irregular schedule as they 
develop with aging or disease. Senolytics can be administered spo-
radically, together with the fact that they can be discontinued for vari-
ous reasons for patients’ safety in cases such as pregnancy, wound 
healing, and other disorders. More importantly, other than lysing and 
removal of senescent cells, no senolytic strategy should interfere with 
the systems or pathways that govern the physiological processes like 
cell cycle or senescence that may trigger the abnormal growth of tu-
mor cells, leading to cancer. Other approaches for reducing patholog-
ical consequences and limiting the number of senescent cells associ-
ated with aging include regulating the immune clearance of senescent 
cells. Senescent cells tend to overexpress specific cell surface pro-
teins compared to other cell types, which led to the development of 
Chimeric Antigen Receptor T cells, vaccinations, and antibody-drug 
conjugates that specifically target these cell surface markers.252,253 
Although they are not fully specific in their removal of senescent 
cells, in certain instances they also inactivated macrophages and 
other non-senescent cell types. On the contrary, small-molecule se-
nolytics may be more advantageous as compared to vaccinations or 
Chimeric Antigen Receptor T cell therapy, since senolytic therapy 
can be stopped whenever senescent cells are needed, such as during 
wound healing, tissue remodeling, or pregnancy.254,255

Future directions
The fascinating field of aging research, and more specifically how 
intervention in aging-related mechanisms may be able to potential-
ly reverse the pathological consequences of aging cells to improve 
the quality of life in older age, is still a relatively underexplored 
area of research. There are many open questions and it is essential 
to continuously track the new knowledge, however, incremental 
it may be, to assist by asking more concise questions. For exam-
ple, the underlying mechanisms of SASP heterogeneity, which can 
make a sizeable proportion of senescent cells resistant to clear-
ing by macrophages and may even promote tissue degeneration, 
including in brain tissues, during chronic cellular stress like that 
brought on by aging, are largely unknown. Also, it would be in-
triguing to see if donor-derived MSCs may reach highly resistant 
senescent cells and transfer their immunomodulatory properties, 
which might facilitate the immune clearance of the cells. Such 
an approach is especially important, as cells with SASP do not 
necessarily possess senescent cell-specific antigens to be targeted 
by small molecules. Additionally, senolytics’ potential efficacy in 
selectively eradicating resistant cells also needs to be further inves-
tigated. Moreover, a majority of the findings in the literature come 
from studies of senescence in mice, but whether senescent cells in 
mice are an accurate representation of those found in humans has 
to be determined. Therefore, more animal models, senescent cell 
culture techniques, and additional human translational research are 
all clearly needed for the field to advance. Also, there is no single 
phenotype for senescent cells, to date, and epigenetic modifica-
tions in senescence are primarily diverse and dynamic. Thus, the 
continuation of research investigating the histone code, and epige-
netic protein/nucleotide interactions might result in the discovery of 
the epigenetic signature of highly resistant senescent cells together 
with the origin of SASP, which will improve the efficacy of epige-
netic drugs to selectively target senescent cells. Last, due to invasive 
methods required by our present methodology to get tissue samples, 
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so much less is known about the true cases of senescence in different 
diseases. Our understanding of these cells’ molecular signatures by 
single-cell transcriptomics and epigenomics and SASP patterns is 
limited. Especially, given the absence of a reliable tool to locate and 
count senescent cells in dysfunctional tissue, hindering the detailed 
understanding of SASP patterns in the absence of a robust method to 
retrieve and quantify senescent cells in diseased tissues.256 Having 
said that, senolytic research has seen exciting times recently, lead-
ing to a greater knowledge of the role senescence plays in human 
health and diseases, which will help control a wide range of diseases 
through public health policies globally.

Conclusion
The removal of senescent cells has become a viable therapeutic 
approach for preventing, delaying aging, or curing a range of ill-
nesses and age-related dysfunctions. Significantly, the present 
article critically examines the key cellular and molecular mech-
anisms underlying aging and aging-related diseases, based on a 
substantial body of crucial information gathered over the years, 
with a specific focus on brain disorders that may be connected to 
other age-related diseases. It will provide the policy leaders with a 
helpful updated informational platform so they may construct effi-
cient public health intervention approaches to limit the age-related 
disease burden, including neurological diseases. Having said that, 
further extensive research is critical to better understand the com-
plete potential of senolytics. The encouraging preclinical results 
of senolytics seem to suggest the effectiveness of medicinal and 
restrictive approaches for ameliorating multimorbidity and extend-
ing lifespan. Control trials that are randomized in nature must be 
undertaken to assess the efficacy and safety of senolytic treatments 
before they may be applied in clinical settings to meet the demands 
of pressing scientific and societal issues.
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